
Cloud & Serverless Architect/Developer

Eric R.
Dutch National
Currently living in Cambodia

https://portfolio-platform.pages.dev
https://github.com/eric-naguras

ㅡ

Skills

See a nice version online
with pictures here:

AWS skills: Cloudfront, Cognito, API Gateway, S3, DynamoDB, EC2, Certificate
Manager, Lambda, Lambda@edge, CloudWatch, SQS, Event Bus, Parameter
Store, CloudDevelopment Kit, CloudFormation, IAM, SNS.

Recent skills: MongoDB, Javascript & ECMAScript, Node.js, Express, Quasar
Framework, Tailwind CSS, Bootstrap CSS, JsonWeb Tokens, Let’s Encrypt,
Mocha Unit Test Framework, Cypress Integration Test Framework, PM2
ProcessManager, jQuery, Vue.js, Sveltekit, Vite, Nodemailer, Stripe Payment
API,Websockets, CloudflareWorkers, Cloudflare Pages, Cloudflare Key Value
store,Webpack, Docker, Docker Compose, Linux, Microservices, Progressive
Web Apps, Electron, Forex Trading, MQL,Blockchain, Crypto Currencies.

Older skills: Dot-net, c#, SQL Server, ASP .NetMVCweb apps,WFC and SOAP
Web services,Windows Forms, Azure.

ㅡ

Introduction I have been involved in cloud computing since the year 2000, way before the
termwas coined by then Google’s CEO Eric Schmidt in 2006. I’m a strong
advocate of serverless because it moves the responsibility for security of the
infrastructure and operating systemswhere it belongs: the hosting provider. It
also eases the life of developers andmakes deployment andmaintenance so
much safer, faster and thus cheaper. I am amember of AWS’s Customer
Council.

I am easy to work with, a creative but pragmatic thinker, excellent
communication skills, result oriented, good negotiating skills, problem solver,
analytical, marketing skills, broad knowledge of ICTmarket and products, ICT
architect, commercial skills, Internet infrastructure & applications skills,
application and implementation experience.

One of my greatest strengths is a deep understanding of a customer's business
needs and translating those needs into a solid, maintainable, scalable, secure
and price efficient architecture. Subsequently coding and implementing the
architecture and deploying it to the desired ormost suitable infrastructure.

I am a curious person. I love to keepmy skills current and spend a considerable
amount of (free) time learning new technologies and products in the field of
web development and cloud computing.

I am a staunch believer of "Make everything as simple as possible, but not
simpler".

My coding style is clear and expressive. I am a bit of a perfectionist and I’m
always looking out for possible security risks. I try to reduce the amount of
dependencies while codingmainly out of a security perspective. If I would need
only one or two functions from a library or module, I’d rather write that
functionmyself (or copy it) than to include the wholemodule in my application.

I have worked a long time as a computer journalist for major Dutch
IT-publications like Computable, InfoWorld, CMCorporate and others. As a
journalist I havemet and talkedwith industry leaders like Bill Gates (Microsoft),
Larry Ellison (Oracle), Billy Joy (creator of Java), CharlesWong (Computer
Associates), and Eric Schmidt (Novel, Google).

https://portfolio-platform.pages.dev/

Experience

Typescript,
Javascript,
docker,
nodejs,
cloudflare workers,
fly.io,
svelte,
geolocation,
sveltekit,
SQL,
Supabase,
Tailwindcss

Typescript
Javascript
Websockets
ESP8266
C++
AWSCDK

Car Guard Mobile App
This mobile app allowsmotorists to give gratuities to the informal car guards
that are ubiquitous in South Africa.

Car guards are individuals who provide an informal parking attendant service.
They are typically dressed in high-visibility vests and assist motorists in finding
parking spaces, keeping an eye on vehicles while the owner is away, and
sometimes helping drivers maneuver out of tight spots. Although car guards
are not officially regulated or employed by the parking facilities or retail
establishments they frequent, their presence is a well-known aspect of urban
life in South Africa.

This mobile application leveragesmodern web technologies and delivers a
seamless user experience akin to native store apps. It can be installed directly
onto devices and offers offline functionality, employing ProgressiveWeb
Applications (PWA) technology for caching capabilities that mitigate the
dependence on an internet connection.

Upon completing a registration process within the app, car guards initiate their
monitoring service by photographing vehicles enrolled in the program,
identifiable through a designated sticker, which serves as verification of their
oversight. They are prompted every 15minutes with a push notification to
capture successive images, ensuring continuous supervision. The guards'
interface displays these photographs sequentially, arranged based on the
required timing for the subsequent snapshot.

Owners of themonitored vehicles receive real-time updates viaWhatsApp,
allowing them to confirm and reward the service with a tip if desired.

The app is built using SvelteKit, the versatile TypeScript framework suitable for
constructing full-stack applications. Full stack here alludes to the framework's
capability to handle both client-side and server-side codewithin a unified
environment. TailwindCSS, a utility-first stylesheet framework has been
implemented as the styling component. The architecture is robust, with data
housed in a Supabasemanaged Postgres database and vehicle license plate
images stored in Supabase Cloud Storage. The application leans on specially
crafted Stored Procedures within Supabase tomanage tasks -- such as updating
multiple tables within a transaction, to ensure consistent database operations.

Additionally, Supabase Triggers enhance the application's interactivity by
invoking SvelteKit endpoints whenever pertinent table adjustments are
identified. The application is crafted to employ the built-in geolocation features
of mobile devices, highlighting address lookup against sent GPS coordinates for
geospatial contextualization.

For optimal performance, the app's infrastructure is deployed on Cloudflare's
workers edge computing environment to ensure proximity-related efficiency
vis-à-vis user interaction. A discrete push server is provisioned for handling
notification delivery using a customized Docker container, with server
capabilities supported via a Node.js runtime. This container is hosted on Fly.io's
expansive Edge network – notably including a strategic South African presence
– to enhance the service availability for the intended demographic.

Mobile Walking App Part 2
The first version was inconvenient to use. Yourmindwanders off and you
forget to press the lap button on the phone. So I designed a hands-free solution
with the help of some electronics. I used amicrocontroller (MCU) and amotion
detector with a beeper. All for under $5. I wrote a program in C++ for theMCU
sending out a lap time via websockets every time themotion sensor picked up
someone passing by. A node js app onmy PCwould receive this signal, calculate
some averages and different display formats and pass it through to a web page
onmobile phone also via websockets . This web page is also being served by the

AWSDynamoDB
AWS Lambda
Serverless

Typescript
Svelte
Svelte Native
Nativescript
AWSCDK
AWS Lambda
AWSDynamodb

Javascript,
Apollo Server,
Apollo Gateway,
CloudflareWorkers,
Serverless

Javascript,
HTML,
CSS,
Tailwind,
Svelte,
Sveltekit,
CloudflareWorkers,

node js app. Theweb page is written using pure javascript, no frameworks or
libraries are used except for a websockets package.When a stop signal from
the phone is received, the node js appwill send the walk data via a AWS
Lambda to Dynamodb for later analysis. All AWS parts are set up using AWS
CDK to describe infrastructure in code.

Mobile Walking App
Walking App is a health-focused tool designed for indoor walkers with specific
health conditions. The application counters the limitations of the AppleWatch,
enabling accurate tracking of pace and distance. To achieve this, I employed
web frameworks like Svelte, Sveltekit, Svelte Native, and Nativescript, crafting
a cross-platformmobile application with an intuitive user interface.

One of the features I incorporated was haptic feedback, offering users a tactile
response and enriching their interaction with the app.The app sends all data to
an AWS backend of storage and for a future website that will display and
analyze this data.

The backend is quickly set upwith AWSCDK, a toolkit by Amazon that lets you
define the infrastructure in code. So I used Typescript to define a Dynamodb
database with a single table design and two lambdas, one for storing data and
one for retrieving data. The CDKmakes it easy to deploy updates with a single
command.

Apollo GraphQL Server on Cloudflare
Workers
A small proof of concept to run Apollo GraphQL servers on Cloudflare workers.
Copilottravel.com, a startup that is building the next generation travel search
and booking engine, askedme tomake a small example on how to run apollo
graphql servers on Cloudflare workers. For their travel search engine they
need combined data from dozens of different sources. GraphQLwasmade for
these kinds of applications.

Copilottravel already started their development on Google Cloud Services
because CGS is node js compatible. But they plan to run everything on
Cloudflare because it has muchmore point of presence and is faster than GCS.

The Apollo server products are built for andwith nodejs and do not run by
default on the CloudflareWorkers platform because the latter does not
support node js.With the help of an experimental package fromApollo and
some guidance from the CloudflareWorkers product manager, I was able to get
a few graphql services running onWorkers and establish a basic connection to
Apollo Studio (themanagement app for Apollo services). Mywork gave them a
handle to continue their porting efforts fromGoogle Cloud to Cloudflare.

100% Serverless Website with Sveltekit
& CloudflareWorkers
A simple website built in a day with Sveltekit and Tailwind running on
Cloudflare's workers. You can see the result at rep-it.nl.

Normally I don't do very plain websites but I did this for my brother and I
wanted to play aroundwith Sveltekit and CloudflareWorkers. So while this is a
simple website from anHTML perspective, there are also complicated
technologies involved. It's a serverless app running on Cloudflare's edge
network. This means it's infinitely scalable, super secure, very fast for visitors
where it doesn't matter if you are in Alaska or Zimbabwe and - in the case of

Responsive Layout,
Server-Side-Rendering,
Serverless

Javascript,
HTML,
CSS,
Tailwind,
Svelte,
Sveltekit,
CloudflareWorkers,
Responsive Layout,
Server-Side-Rendering,
Serverless

Cloudflare - can be deployedwith a single command. (Actually, with the latest
version of CloudflareWorkers/Pages, you only need to push it to a repository
like Github or Gitlab)

This wasmy first attempt to build something with Sveltekit, a newweb
framework with a radically different approach thanmost other web
frameworks.

Svelte is a component framework— like React or Vue— but with an important
difference. Traditional frameworks allow you to write declarative state-driven
code, but there's a penalty: the browsermust do extra work to convert those
declarative structures into DOMoperations, using techniques like that eat into
your frame budget and tax the garbage collector. Instead, Svelte runs at build
time, converting your components into highly efficient imperative code that
surgically updates the DOM. As a result, you're able to write ambitious
applications with excellent performance characteristics.

Sveltekit can generate different types of websites, static and server side
rendered and uses adapters to tailor the result to specific deployment types
like CloudflareWorkers, Node.js, Netlify, Vercel, etc. In this case I used
CloudflareWorkers. For styling I tried Tailwind, something I wanted to work
with for a long time.With very little effort I got a perfect score on Google’s
Lighthouse, a website performance toolkit, both onDesktop andMobile.

The website was originally created with plain html/css. To rebuild it using
Sveltekit was not very difficult. Each file in a routes folder automatically
becomes a route so I just added a file per page. Additionally I added a special
layouts file that contains the header, footer and sidebar that will be repeated on
every page. No specific Svelte code or Javascript was needed for this. The
header navigation bar was built as a separate component and had to be
included in the layout page. This navigation bar is the only part that has some
specific Svelte code for showing and hiding themobile drawermenu. Themenu
also uses Svelte specific transitions.

100% Serverless Project Portfolio
Built with Sveltekit and Tailwind running on Cloudflare's workers. Because
LinkedIn does not offer a nice way to show a project's portfolio, I built this
website. I wanted to show every page as a separate link onmy profile so I
needed a Server-Side-Renderedwebsite.

So while this is a simple website from anHTML perspective, there are also
complicated technologies involved. It's a serverless app running on Cloudflare's
edge network. This means it's infinitely scalable, super secure, very fast for
visitors where it doesn't matter if you are in Alaska or Zimbabwe and - in the
case of Cloudflare - can be deployedwith a single command. (Actually, with the
latest version of CloudflareWorkers/Pages, you only need to push it to a
repository like Github or Gitlab) I also wanted to use Serverless hosting so I
don't have to pay for a full server running 24x7. Sveltekit, together with the
Cloudflare adapter makes this just a deployment option without the need of
any code changes.

The Tailwind CSS utility classes made it possible to not have a css file or create
classes on every page. Instead you can do a sort of real-time design; keep a
browser window open next to your editor and add utility classes directly on
elements, like font-bold, text-gray-500 ormt-5 for a topmargin.

I like to keep two browser windows open next tomy editor; one for amobile
view and one for a desktop view. This way I can immediately see if I need

different classes/layouts for mobile or desktop. This way of working is very
efficient and a real time saver.

Javascript,
Node.js,
Express.js,
MongoDb,
Vue.js 3,
Quasar Framework,
AWS EC2,
AWS S3Web Server,
JSONWeb Tokens,
Docker,
Docker Compose,
NGINX,
Let’sEncrypt,
Responsive Layout

This wasmy 2nd Sveltekit/Tailwind trial after working for a few years with
Vue.js. I like Sveltekit verymuch because it lets youwrite exceptionally clear
and concise code, it compiles to extremely fast, pure Javascript.

Custom CRM Application
I came across this project on one of the freelance IT-projects websites. Because,
for obvious reasons, I cannot share that much on projects I did for customers,
so I decided to spend aweek and build part of this app to showwhat I can do,
how it would look like and howmuch I can archive in a week's time.

I plan to add somemore functionality whenever I have some spare time. I’m
also thinking of making several versions of this app, each showing different
technologies. The specifications document is at myGoogle Drive. I also put the
source code into public repositories that you can find here: crm-frontend and
here: crm-backend.

This project is a good example of how I translate business requirements in an
application. After reading the specifications I still had a lot of questions but also
enough to build something functional.

The Front-end contains everything you see except the variable data. The
frontend is technically a static Single Page Application and can be hosted on
any simple web server. Currently it's hosted in Amazon's London datacenter as
an S3website. This kind of static hosting is extremely cheap. For a business app
with under a dozen users the costs would stay well under a dollar a month. You
only pay for the transfer of the single webpagewhen it is loaded in a user's
browser. So for an app like this it's probably only twice a day. This all means that
it is infinitely scalable and extremely secure. Although an empty frontend
would not need any security as there is no data or secrets inside the webpages.
The frontend is built with Vue.js 3. and theQuasar Framework.
Then there is a backend server process that, on request, will provide the data to
the frontend like lists of dealerships, venues and detailed information about a
dealership or venue. It will also handle update requests for deleting or
modifying data. Access to the data is limited to authenticated and authorized
users only. Through the frontend you need to login providing a username and
password.When a login has been approved the server will return a tokenwith a
limited expiration.With every subsequent request this token needs to be
provided.Without the token or with an invalid token no data will be returned.
The token contains secured information about the user who requested it like
his userId and his role. By using role based authentication it's possible to have a
fine grained system of who can see and alter what information. The backend is
built with node js, an extremely fast javascript runtime especially suited for
high transaction backend systems. This node js code is containerized using
Docker. This Docker container can run on any high-end hosting facility and can
be automatically scaled up or down depending on the demand. Currently it's
running in Amazon's London datacenter on the smallest EC2 virtual machine.
Amazon hasmore elegant container systems but they come at a higher price
andwould be overkill for this demo app. To serve data over HTTPS, I added two
Docker container apps to the deployment. A nginx proxy web server together
with a special nginx companion app that automatically creates and updates
Let's Encrypt SSL certificates without anymanual work.

The last part is a database server where all the data is persisted. Currently the
datastore is aMongodb hosted solution which is fine for small installations.
Depending on the demand and use cases of an application, this database could
also be hosted on Amazon.

The app is meant for desktop displays because of its high information density.
But the app can be used on amobile device. In fact the topmenu bar as seen in
the desktop browser is replaced onmobile by a so-called hamburger menu (the
three stacked bars in the top left corner). Clicking on themenu iconwill open a
side drawer with an access menu to all pages in the app. Also the tables in the

Javascript,
HTML,
CSS,
Node.js,
Express.js,
MongoDb,
Vue.js 2,
Vue.js 3,
Quasar Framework,
Mocha Unit Test Framework,
Cypress Integration Test
Framework,
PM2 ProcessManager,
AWS EC2,
AWS S3Web Server,
AWS Lambda,
AWS SQSMessages,
AWS Parameter Store,
AWSCloudFront,
AWS Event Bus,
AWSCloudDevelopment Kit,
Nodemailer,
Stripe Payment API,
Websockets,
JSONWeb Tokens,
Docker,
Docker Compose,
NGINX,
Let’sEncrypt,
HTTPS,
SSL,
Responsive Layout,
Server-Side-Rendering,
Serverless,
Linux shell scripts

Desktop are replaced by cards because tables are difficult to display on small
screens. Because of the high information density, other parts of the application
will needmuchmore adaptation to small screens. It is doubtful if a full mobile
application would be needed or useful but the Call List and the Call Report
could come in handy onmobile.

Rewrite of Music SearchWeb Application
musicaltheatersongs.com is a web application for musicians and users in the
musical and theater sector to search for musical songs based on
musical-technical terms. The app is mainly used bymusical students and
teachers. It contains more than 11,000 songs and is used by tens of thousands
of users globally. The original appwas writtenmore than 6 years ago and used a
MVC framework called Derby which became obsolete. It was difficult to
maintain the code or to add new functionality. I was asked to rewrite the
application using amoremodern toolset.

The original application had two functional parts (actually three if you count
theMongodb database as a part of the application) but was built as a single app
(except for the database which is a separate service). The two functional parts
are the website front-end, the part end users see and use for their searches and
store their songs lists. The other part is an admin section where new songs,
shows, composers and lyricists are entered andmodified. It alsomanages user’s
subscriptions, both individual and institutional (universities, etc).

I split the app into three separate parts that work independently. I created a
separate admin front endwritten in Vuejs 2 combinedwith the Bootstrap CSS
framework and some 3rd party components like a versatile table component.
The admin front-end is a Single Page Application that runs on Amazon’s S3web
server combinedwith AWSCloudFront for world wide cached content delivery
andHTTPS access. I wrote Cypress tests to test the front-end after and during
modifications. The front-end is fully stateless and does not rely on previous
requests. Some of the information that is not too large, is held in memory for as
long as the page remains open. Login info and the JSONweb token are stored in
LocalStorage andwill be reused if a user closes or refreshes the page.

Admin Back-end
To access andmodify data from the admin front-end, I created an API service
that serves data securely and stateless to both the admin front-end and a new
website front-end. This API service is built using nodejs with Express.js. The
routes are secured by using JSONWeb Tokens for every request accessing
non-public data. There is also a “development” version of the API to test new
features under development. Both the production and development services
are packed inside Docker containers.
Inside the containers I use the PM2 process manager tomonitor the node js
app and immediately restart it if it would ever crash. Both the front-end and
API service are completely stateless. There is no reliance on previous requests
so a quick restart of the service is not noticed by the users.

Back-end servers need a lot of sensitive information like database passwords,
secret keys to external APIs like the Stripe payment API or the external email
service, etc. It’s always a bit problematic where to store this sensitive info, it’s
very important these secrets stay secret. For this I created a small module that,
when the service starts, reads this info from an AWSParameter Store. In
addition to secrets I also added some other bits of key information that is likely
to change during the lifetime of the application like subscription prices.
Without making changes to the code and a need for redeployment, you can
simply and securely change this info though the AWSAdmin console and the
updated info will be used by the application.

Jobs Service
The app shows some statistical information to its users about their logins and
searches. This information needs to be calculated from login and search logs.
Because it consumes considerable resources, I decided to implement this
collecting of statistics as a separate service so it would not interfere with
normal operations. This is also a node js app that runs periodically through the
use of a cron plug-in. This service is built in a way that new job types can be
easily added. There is a main process that imports jobs as separate javascript
files and adds those to a cron queue.

PublicWebsite
Lastly, I created a new front-end for the public website (the one customers use
to search for songs). This web app is madewith Vue.js 3 and theQuasar
Framework. It uses Server Side Rendering (SSR) for SEO reasons. SSR needs a
web server (the code for this is generated automatically by theQuasar
Framework) so for this, a Docker container is used as well. The newwebsite is
built with aMobile First approach resulting in amuch better mobile usability
compared to the old website. (Actually, the old website is more or less unusable
on amobile device)

Lambda
Some services like payment processing when subscribing through the website
or sending emails to expiring subscribers are implementedwith AWS Lambda
functions. The reason for using lambdas is to offload processing time from the
API server, easier maintainability of those services and to gain experience with
full serverless and Lambda functions. Lambda functions communicate their
status to the back-end through the AWS Eventbus. Deployment of the Lambda
and eventbus functions is donewith the newAWSCloudDevelopment Kit
(CDK). This is a toolset for Infrastructure as Codewhereby everything is set up
and configured through Typescript/Javascript. This makes it possible to store
modifications of infrastructure in a code repository and keep different versions
of the infrastructure in use.

Deployment
All separate parts of the application have production and development/test
versions. Modifications can bemade and tested first before adding them to the
production app. This brings the total of services to 6 (2 api backends, 2 jobs
services and 2websites) all created as Docker containers. I added twomore
Docker container apps to the deployment. A nginx proxy web server together
with a special nginx companion app that automatically creates and updates
Let's Encrypt SSL certificates without anymanual work. To ease the
management and deployment of 8 containers I’m using Docker Compose. All
instructions for running the containers, their names, ports, domain names, etc
are stored in a .yaml file.When a service needs updating, a newDocker
container is built and automatically deployedwithout interrupting the
unmodified, already running containers. To automate deployment, I wrote linux
shell scripts that will copy files frommy developmentmachine (linux orMac) to
the EC2 instance and remotely execute a docker build command and apply
changes with docker-compose. All of this is done through a secure shell (ssh).
The application hasmany users but does not havemany transactions.We can
run all containers out of a single EC2 instance. If the transaction volumewould
increase it would be very easy to add another EC2 instance and use a load
balancer in front of themultiple EC2 instances.We could also switch to AWS
Elastic Container Service or AWS Fargate and run the containers from there.
Since everything is already containerized no code changes would be necessary.
Instead of using Docker Compose wewould switch to Kubernetes.

Javascript,
HTML,
CSS,
Node.js,
Express.js,
MongoDb,
C++

Javascript,
HTML,
CSS,
Node.js,
Express.js,
MongoDb,
Electron,
Pusher,
AWS EC2,
AWS S3Web Server,
Redis,
Websockets,
Vue.js,
Bootstrap CSS,
queues,
micro-services,
JSONWeb Tokens,
Docker,
PM2,
Jelastic,
Winston logging,
Loggly logging

Bitcoin Fork
I was asked to help with a Bitcoin clone (fork) called Bitcoin Euro (BTE). I
installed a number of BTE nodes on virtual servers and set up the necessary

infrastructure around it like a blockchain explorer, a mining pool and awallet.
For this I adapted a fewOpen Source projects to work with BTE instead of
Bitcoin.

I’m not really a blockchain expert but I do have a reasonably good insight in how
blockchains work. I did make some small changes to the Bitcoin source code
(madewith c++). The explorer, mining pool andwallet software were all built
with Javascript technologies and node.js.

Cloud Trade Copier & Desktop Trade Copier
The Cloud Trade Copier is a cloud based Binary Options Trading System system
where Signal Providers send signals to the service using a web based interface.
When a signal arrives, all the subscribers to that signal are gathered from a
Redis in-memory key-value store. Per user we check which broker they use and
send the signal to other microservices (one ormore per broker) that will send
the purchase transaction to the broker's server.

The front endwebsite is a responsive design built using Vue.js and Bootstrap.
It's used for generating signals and gives the Signal Provider feedback on this
performance and his customers. The system has its own subscription system
where end-users can subscribe and join the channels of Signal Providers. The
front end is stateless and uses JWT (JasonWeb Tokens) for authentication and
authorisation. It's role-basedwhere Signal Providers can designate other
traders to send signals on their behalf. The front end is a static site hosted on
AWS S3 buckets and uses AWSCloudFront as its Content Delivery Network.

The backend consists of a collection of loosely coupledmicro-services using
node.js as the run-time. In Options Trading, fast execution speed and low
latency is themost important feature. By implementing all functions as
micro-services that can run in parallel on different servers we can simply scale
horizontally to keep the total throughput under the required one second, no
matter howmany users the system has to trade for.We just addmore instances
of services. Themain service will receive signals via a websockets interface and
add every user who subscribed to the signal to a Redis in-memory queue. The
users are also stored in the same Redis database for ultra-fast retrieval.When
all applicable users are added to the queue, the service will send amessage via
websockets to all broker services. Upon the reception of themessage the
broker service will fetch a user from the queue and process the signal.When
done, it will get a new user from the queue until the queue is empty. It will then
sleep until it gets a newmessage. This waymultiple instances of the same
broker service act as workers to process the queue as fast as possible.

The system also uses aMongoNoSQL database for storage of users, their
expiry dates and their trading results. Mongo however, is too slow for retrieving
users while a signal is received.When themain service starts, all valid users are
copied to the Redis in-memory store.When a new user is added or removed the
API server will signal the signal service via websockets and a user is added or
removed from the Redis store All parts of the system, except the front end, are
hosted inside Docker containers using the node process manager PM2 and
running on a Jelastic hosting platform. PM2monitors the node processes and
gives feedback about their performance and can automatically restart any
crashed process it manages. Jelastic is a platform for running services and
provides automatic horizontal and vertical scaling. Lastly there is a separate
API server for serving data to the front endweb site, all protected by Jason
Web Tokens. The API server is built with node, express andMongoDb. The API
server is behind a load balancer to improve resilience and enable A/B testing

Electron,
HTML,
CSS,
Node.js,
jQuery,
Express.js,
MongoDb,
AWS EC2,
AWS S3Web Server,
JSONWeb Tokens,
Docker,
Pusher,
Winston logging,
Loggly logging

C#,
Dot-net,
DevExpress UI components,
SQL Server,
Azure,
ASP.net,
XML,
SOAP,
PKI

with different implementations of features. It also enables updating codewith
zero downtime.

The Desktop app is made forWindows andMac that can trade Binary Options
based on signals from a Signal Provider. The signal provider uses a simple app as
pictured below to signal a trade opportunity. Because the binary options trade
is a very fast moving business where a single second canmean the difference
between a losing or winning trade, the interface has to be really simple so with
just a single click the trader (the person generating the signal) can send out the
signal.

The app is built using HTML/CSS/Javascript bundled as an Electron app for
Windows,Mac and Unix. Electron is a framework for building desktop
applications using JavaScript, HTML, and CSS. By embedding Chromium and
Node.js into its binary, Electron allows you tomaintain one JavaScript codebase
and create cross-platform apps that work onWindows, macOS, and Linux— no
native development experience required.

Desktop Signal Receiver
End-users who subscribe to one ormore signal providers use another Desktop
app forWindows orMacintosh to trade the signals the provider sends out.
Binary Option Brokers do not give API access to their trading systems. So I built
an app that will open a broker’s website and inject some Javascript code in the
webpage to be able to control the website and execute trades. The user
chooses from a number of available brokers, enters their credentials and sets
somemoneymanagement settings.

When a Signal Provider enters a trade in a special Desktop app created for that
purpose, that signal is sent to our server, validated and forwarded to
pusher.com, amessaging service. The user's Desktop Trade Copier app receives
the signal andmy custom code that was injected into the broker's web site, is
clicking the right buttons and filling in the required fields.

This Desktop app is built with node, html and css, together with Electron. The
latter is a sort of a shell program that includes theOpen Source Chromium
browser together with the V8 Javascript runtime. Electron creates full native
desktop programs but using html/css/js. It has full access to the file system and
any other native resource. It also allows you to inject javascript into existing
websites. This function is heavily used in the Desktop Trade Copier. This app
utilizes jQuery inmany places for getting screen objects and firing events. It
supports ten different Binary Options brokers. It also includes a user
subscription service with automatic expiries.

Award winning bookkeeping program
A shrink wrappedWindowsDesktop program for bookkeeping created for the
Dutchmarket. I did the design, architecture and programming of this app. At it's
time it was a refreshing new approach to accounting and got thousands of
users. The goal was tomake it as easy as possible for non specialists to keep
their books up-to-date.

The program received several awards from the Dutch computer press. It's
created using C# and other dot.net technologies. For storing data it usesMS
SQL Server and for the User Interface, DevExpress libraries were used.
DevExpress made it very easy to adapt screens to your own preferences.
Extensive reporting is an important feature of this product.

From a single codebase, four different versions were created. Two invoicing
only and two bookkeeping versions both in a regular and a pro version. During

installation it would ask for a serial number.When the user entered the serial
number, the installer programwould contact a webservice that I also created
using ASP.net running onMSAzure, where the serial number would be checked
against a SQL Server database. If found, the webservice returns a config file
that contains the version type of the product.

This config file with an XML syntax, is signedwith a Private Key on the server.
The desktop program has the public key and checks the validity of the config
file every time the program
starts. It is therefore impossible to change the config file because this would
invalidate the PKI signature.

Education
Atheneum (Coornhert Lyceum, Haarlem)

Technical University (HTSHaarlem)

Systems Analyses (SASO IBMNetherlands)

NIAM (CapGemini)

System 36 (IBMNetherlands)

Extra Curriculum &
Publications Member and director of the Rotary Club of Cebu South, Philippines.

Co-Author of published research reports about Graphical User Interfaces, SQL
Databases, andMultimedia (published by Disk’AD).

Book dBase forWindows (AddisonWesley ISBN 9789067895729).

Speaker at IT seminars about Graphical User Interfaces, IT Standards in the
Nineties andObject Oriented Programming.

Judge of several programming competitions.

